## Question

### Solution

Correct option is a2 +1 = b2 + 1 = (a – 1)2 + (b – 1)2

⇒   a = b [as 0 < a, b < 1]and

2(a2 – 2a + 1) = a2 + 1 ⇒ a2 – 4a + 1 = 0 , area of the triangle #### SIMILAR QUESTIONS

Q1

Given two points A(-2, 0) and B(0, 4), M is a point with coordinates (xx), x 0. P divides the joint A and B in the ratio 2 : 1 . C and D are the mid-points of BM and AM respectively. Find the perimeter of the quadrilateral ABCD. Find the ratio of the areas of the triangles APM and BPM .

Q2

Given two points A(-2, 0) and B(0, 4), M is a point with coordinates (xx), x 0. P divides the joint A and B in the ratio 2 : 1 . C and D are the mid-points of BM and AM respectively. Find the perimeter of the quadrilateral ABCD.

Q3

Given two points A(-2, 0) and B(0, 4), M is a point with coordinates (xx), x 0. P divides the joint A and B in the ratio 2 : 1 . C and D are the mid-points of BM and AM respectively. Find the perimeter of the quadrilateral ABCD. Find the area of the quadrilateral ABCD in units.

Q4

A(p, 0), B(4, 0), C(5, 6) and D(1, 4) are the vertices of a quadrilateral ABCD If is obtuse, the maximum integral value of p is

Q5

The value of p for which is obtuse and is a right angle is

Q6

A(p, 0), B(4, 0), C(5, 6) and D(1, 4) are the vertices of a quadrilateral ABCD

If two sides of the quadrilateral are equal; area of the quadrilateral is

Q7

(0, 0), A(1, 1), B(0, 3) are the vertices of a triangle OAB.divides OB in the ratio 1 : 2, Q is the mid-point of AP, R divides AB in the ratio 2 : 1

1:- If Q8

(0, 0), A(1, 1), B(0, 3) are the vertices of a triangle OAB.divides OB in the ratio 1 : 2, Q is the mid-point of AP, R divides AB in the ratio 2 : 1

area of ΔPQR : area of ΔOAB is

Q9

(0, 0), A(1, 1), B(0, 3) are the vertices of a triangle OAB.divides OB in the ratio 1 : 2, Q is the mid-point of AP, R divides AB in the ratio 2 : 1

If S is the mid-point of PR, then QS is equal to

Q10

If the triangle ABC in  isosceles with AC = BC and 5(AB)2 = 2(AC)2 then