S1 and S2 are Spring Balances. A Block A is Hanging From Spring BalanceS1 and Immersed In A Liquid L which Is Contented A Beaker B. The Mass Of Beaker B is 1 Kg And The Mass Of Liquid L is 1.5 Kg. The S1 and S2balances Reads 2.5 Kg And 7.5 Kg Respectively. What Will Be The Reading OfS1 and S2 when The Block A is Pulled Up Out Of The Liquid :  

Why Kaysons ?

Video lectures

Access over 500+ hours of video lectures 24*7, covering complete syllabus for JEE preparation.

Online Support

Practice over 30000+ questions starting from basic level to JEE advance level.

Live Doubt Clearing Session

Ask your doubts live everyday Join our live doubt clearing session conducted by our experts.

National Mock Tests

Give tests to analyze your progress and evaluate where you stand in terms of your JEE preparation.

Organized Learning

Proper planning to complete syllabus is the key to get a decent rank in JEE.

Test Series/Daily assignments

Give tests to analyze your progress and evaluate where you stand in terms of your JEE preparation.

SPEAK TO COUNSELLOR ? CLICK HERE

Question

S1 and S2 are spring balances. A block A is hanging from spring balanceS1 and immersed in a liquid L which is contented a beaker B. The mass of beaker B is 1 kg and the mass of liquid L is 1.5 kg. The S1 and S2balances reads 2.5 kg and 7.5 kg respectively. What will be the reading ofS1 and S2 when the block A is pulled up out of the liquid :  

Solution

Correct option is

S1 will read 2.5 kg and S2 will read 7.5 kg

 

When a body is immersed in a liquid, its experiences an up thrust u. Which make spring balance S1 to read

Apparent weight = true weight – up thrust 

  = wA – u = 2.5 kg  

S2 reads : 

    weight of B + weight of L + reaction = up thrust of A   

       

     

        

                         

                      

 

SIMILAR QUESTIONS

Q1

Water at a pressure of  flows at 2.0 m/s through a pipe of 0.02 m2 cross-sectional area which reduces to 0.01 m2. What is the pressure in the smaller in the cross-section of the pipe?

Q2

Water is flowing through two horizontal pipes of different diameters which are connected together. In the first pipe the speed of water is 4.0 m/s and the pressure is . Calculate the speed and pressure of water in the second pipe. The diameters of the pipes are 3.0 cm and 6.0 cm respectively.

Q3

A liquid is kept in a cylindrical vessel which is being rotated about its axis. The liquid rises at the sides. If the radius of the vessel is 0.05 m and the speed of rotation is 2 rev/s, find the difference in the heights of liquid at the centre of the vessel and at its sides.

                                                                              

Q4

The pressure difference between two points along a horizontal pipe, through which water is flowing, is 1.4 cm of mercury. If, due to non-uniform cross-section, the speed of flow of water at the point of greater cross-section is 60 cm/s, calculate the speed at the other point. Density of mercury . 

Q5

Water flows into a horizontal pipe whose one end is closed with a valve and the reading of a pressure gauge attached to the pipe is . This reading of the pressure gauge falls to  when the valve is opened. Calculate the speed of water flowing into the pipe.

Q6

Air is streaming past a horizontal aeroplane wing such that its speed is 120 ms–1 at the upper surface and 90 ms–1 at the lower surface. If the density of air is 1.3 kg/m3, find the difference in pressures between the two surfaces of the wing. If the wing is 10 m long and has an average width of 2 m, then calculate the gross lift on it.      

Q7

A horizontal tube has different cross-sectional areas at points A and B. The diameter of A is 4 cm and that of B is 2 cm. Two manometer limbs are attached at A and B. When a liquid of density 0.8 g/cm3 flows through the tube, the pressure-difference between the limbs of the manometer is 8 cm. calculate the rate of flow of the liquid in the tube. (g = 980 cm/s2  

Q8

 

Find out the velocity of efflux of water from a hole in the wall of a tank made at 20 m below the free surface of water in the tank.

g = 10 m/s2.

Q9

Water tank has a hole in its wall at a distance of 10 m below the free surface of water. The diameter of the hole is 2 mm. Compute the velocity of efflux of water from the hole and the rate of flow of water. (g = 9.8 m/s2

Q10

Air is blow through a pipe AB at a rate of 15 liter per minute. The cross section area of the wide portion of the pipe AB is 2 cm2 and that of the narrow potion is 0.5 cm? the difference in the water level h is :