﻿ PN is the ordinate of any point P on the hyperbola  and AA’ is its transverse axis. If Q divides AP in the ratio a2 : b2, then NQ is : Kaysons Education

# PN is The Ordinate Of Any Point P on The Hyperbola  and AA’ is Its Transverse Axis. If Q divides AP in The Ratio a2 : b2, Then NQ is

#### Video lectures

Access over 500+ hours of video lectures 24*7, covering complete syllabus for JEE preparation.

#### Online Support

Practice over 30000+ questions starting from basic level to JEE advance level.

#### National Mock Tests

Give tests to analyze your progress and evaluate where you stand in terms of your JEE preparation.

#### Organized Learning

Proper planning to complete syllabus is the key to get a decent rank in JEE.

#### Test Series/Daily assignments

Give tests to analyze your progress and evaluate where you stand in terms of your JEE preparation.

## Question

### Solution

Correct option is

⊥ to A’P

(Q) is any point on hyperbola

…. (1)

PN is ordinate . For N is feet of ⊥ from P or AA’. Q(h, k) divides AP in ratio a2 : b2 and A(a, 0)

Slope of NQ

#### SIMILAR QUESTIONS

Q1

The ,locus of the middle points of portions of the tangents to the hyperbola , intercepted between the axes is

Q2

If the polar of a point with respect to  toches the hyperbola , then the locus of the point is

Q3

The locus of pole of any tangent to the circle x2 + y2 = 4 w.r.t. the hyperbola x2 – y= 4 is the circle

Q4

The foci of a hyperbola coincide with the foci of the ellipse . The equation of the hyperbola if its eccentricity is 2, is

Q5

The normal to the rectangular hyperbola xy = c2 at the point ‘t’ meets the curve again at point “t” such that

Q6

If SK perpendicular from focus S on th tangent at any point P of the hyperbola  , then K lies on

Q7

The lines 2x + 3y + 4 = 0 and 3x – 2y + 5 = 0 may be conjugate w.r.t. the hyperbola  if

Q8

The condition for two diameters of a hyperbola  represented by Ax2 + 2Hxy + By2 = 0 to be conjugate is

Q9

If the polars of (x1y1) and (x2y2) w.r.t. the hyperbola  are at right angles, then

Q10

The line 3x + 2y + 1 = 0 meets the hyperbola 4x2 – y2 = 4a2 in the points P and Q. The coordinates of point intersection of the tangents at and Qare