Question

PN is the ordinate of any point P on the hyperbola  and AA’ is its transverse axis. If Q divides AP in the ratio a2 : b2, then NQ is

Solution

Correct option is

⊥ to A’P

(Q) is any point on hyperbola

                                            …. (1)

PN is ordinate . For N is feet of ⊥ from P or AA’. Q(h, k) divides AP in ratio a2 : b2 and A(a, 0)

            

Slope of NQ 

                    

     

 

SIMILAR QUESTIONS

Q1

The ,locus of the middle points of portions of the tangents to the hyperbola , intercepted between the axes is

Q2

If the polar of a point with respect to  toches the hyperbola , then the locus of the point is

Q3

The locus of pole of any tangent to the circle x2 + y2 = 4 w.r.t. the hyperbola x2 – y= 4 is the circle

Q4

The foci of a hyperbola coincide with the foci of the ellipse . The equation of the hyperbola if its eccentricity is 2, is

Q5

The normal to the rectangular hyperbola xy = c2 at the point ‘t’ meets the curve again at point “t” such that

Q6

If SK perpendicular from focus S on th tangent at any point P of the hyperbola  , then K lies on

Q7

The lines 2x + 3y + 4 = 0 and 3x – 2y + 5 = 0 may be conjugate w.r.t. the hyperbola  if

Q8

The condition for two diameters of a hyperbola  represented by Ax2 + 2Hxy + By2 = 0 to be conjugate is

Q9

If the polars of (x1y1) and (x2y2) w.r.t. the hyperbola  are at right angles, then 

Q10

The line 3x + 2y + 1 = 0 meets the hyperbola 4x2 – y2 = 4a2 in the points P and Q. The coordinates of point intersection of the tangents at and Qare