Question

Solution

Correct option is

 

We have to find value of  

      

Given that: 

      

     

  

  

  

  

Similarly, we can find 

.

SIMILAR QUESTIONS

Q1

 

The smallest +ive x such that 

     

Q2

 

The general solution of the trigonometrical equation

     is given by

Q3

 

The general solution of equation   

       

Q4

The solution set of  in the interval 

Q5

If , then the values of  form a series in

Q6

 then the value of x other than zero, lying between  is

Q7

The maximum value of  in the interval  is attained when x =

Q8

 

The general solution of the equation  

         is given by

Q10

 and .