Question

Solution

Correct option is

1

Putting x = 0 in the given equation, we get y = 0. Differentiating both the sides,

We have 

             

Putting x = 0, y = 0, we have

             

SIMILAR QUESTIONS

Q2

 for real and y. If f’(0) exists and equals – 1 and (0) = 1 then the value of f(2) is

Q3

If f : R  R is a function such that (x) = x3 + x2 f’(1) + xf’’(2) + f’’’(3) for x Ïµ R then the value of f (2) is

Q4

 and n are integers, m ≠ 0, n > 0, and let p be the left hand derivative of |x – 1| at x = 1. If 

Q5

If f (x) = |x – 2| and g(x) = f (f (x)), then for x > 20, g’(x) is equal to

Q6

If f (9) = 9 and f’(9) = 4, then 

Q7

The derivatives of sec –1 [1/(2x2 – 1)] with respect to  at x = ½, is

Q8

Let F(x) = f(xg(xh(x) for all real x, where f(x), g(x) and h(x) are differentiable functions. At some point x0,  

                 

                   

Q9

If the function  then the value ofg’(1) is

Q10