﻿ : Kaysons Education

#### Video lectures

Access over 500+ hours of video lectures 24*7, covering complete syllabus for JEE preparation.

#### Online Support

Practice over 30000+ questions starting from basic level to JEE advance level.

#### National Mock Tests

Give tests to analyze your progress and evaluate where you stand in terms of your JEE preparation.

#### Organized Learning

Proper planning to complete syllabus is the key to get a decent rank in JEE.

#### Test Series/Daily assignments

Give tests to analyze your progress and evaluate where you stand in terms of your JEE preparation.

## Question

### Solution

Correct option is

1

Putting x = 0 in the given equation, we get y = 0. Differentiating both the sides,

We have

Putting x = 0, y = 0, we have

#### SIMILAR QUESTIONS

Q2

for real and y. If f’(0) exists and equals – 1 and (0) = 1 then the value of f(2) is

Q3

If f : R  R is a function such that (x) = x3 + x2 f’(1) + xf’’(2) + f’’’(3) for x Ïµ R then the value of f (2) is

Q4

and n are integers, m ≠ 0, n > 0, and let p be the left hand derivative of |x – 1| at x = 1. If

Q5

If f (x) = |x – 2| and g(x) = f (f (x)), then for x > 20, g’(x) is equal to

Q6

If f (9) = 9 and f’(9) = 4, then

Q7

The derivatives of sec –1 [1/(2x2 – 1)] with respect to  at x = ½, is

Q8

Let F(x) = f(xg(xh(x) for all real x, where f(x), g(x) and h(x) are differentiable functions. At some point x0,

Q9

If the function  then the value ofg’(1) is

Q10