Question

Solution

Correct option is

– 4

Differentiating both the sides, we have cos x cos y – sin x sin y dy/dx = 0. Putting x = y = π/4, we have 

Differentiating again, we get 

  

    

Putting x = y = π/4, we have

      

SIMILAR QUESTIONS

Q1
Q3

If f’(x) is continuous at x = 0 and f’’(0) = 4, then the value of

Q4

Suppose f is differentiable at x = 1 and

Q5

Suppose that f is a differentiable function with the property that

f(x + y) = f(x) + f(y) + xy and 

Q6

  

 

Q9

up to n terms, then y’’(0) is equal to

Q10

Let f and g be differentiable function satisfying g’(a) = 2, g(a) = b and f o g = I (identity function). Then f’(b) is equal to