Question

Solution

Correct option is

(x) has exactly two points of local maxima & f(x) has no point of local minima There are no points of local maxima and local minima, where (x) is continuous.

Where (x) is discontinuous, i.e. at Has a local maximum value.

So no minima but two local maxima. SIMILAR QUESTIONS

Q1

Find the semi-vertical angle of the cone of maximum curved surface area that can be inscribed in a given sphere of radius R.

Q2

Find the point on the curve y = x2 which is closest to the point A(0, a).

Q3

Find the shortest distance between the line y – x = 1 and the curve x = y2.

Q4

Find the vertical angle of right circular some of minimum curved surface that circumscribes in a given sphere.

Q5 AB > 0, then minimum value of sec A + sec B is equal to

Q6 Q7

(x) = x2 – 4 | | and Then (x) has

Q8

If xy = 10, then minimum value of 12x2 + 13y2 is equal to

Q9

The function f (x) = x (x2 – 4)n (x2 – x + 1), n Ïµ N assumes a local minima at x = 2, then

Q10

Total number of critical points of (x) = maximum (sin x, cos x) ∀ x Ïµ (–2π, 2π) equal to