Question

  

Discuss maxima and minima.

 

Solution

Correct option is

x = 1

  

Thus at x = 1 is a point of maxima.

SIMILAR QUESTIONS

Q1

 

Find all the values of a for which the function possess critical points.

 

Q2

 

Using calculus, find the order relation between x and tan-1x when x Ïµ [0, ∞). 

Q3

Using calculus, find the order relation between x and tan-1x when  

Q4

The set of all values of ‘b’ for which the function (x) = (b2 – 3b + 2) (cos2x – sin2x) + (b – 1) x + sin 2 does not possesses stationary points is:

Q5

 

Find the local maximum and local minimum of (x) = x3 + 3x in [–2, 4].

Q6

The function  has a local maximum at x =

Q7

Find the set of critical points of the function  

              

Q8

Let (x) = sin x – x on [0, π/2], find local maximum and local minimum.

Q9

  

Then find the value of ‘a’ for which (x) has local minimum at x = 2.

Q10

A cubic (x) vanishes at x = –2 and has relative maximum/minimum x = –1 and   Find the cubic (x).