﻿   Let f be a real function satisfying            f (x + y + z) = f (x) f (y) f (z)  for all real x, y, z . If f (2) = 4 and f’ (0) = 3. Then find f (0) and f’ (2). : Kaysons Education

# Let f be A Real Function Satisfying            f (x + y + z) = f (x) f (y) f (z)  For All Real x, y, z . If f (2) = 4 And f’ (0) = 3. Then Find f (0) And f’ (2).

#### Video lectures

Access over 500+ hours of video lectures 24*7, covering complete syllabus for JEE preparation.

#### Online Support

Practice over 30000+ questions starting from basic level to JEE advance level.

#### National Mock Tests

Give tests to analyze your progress and evaluate where you stand in terms of your JEE preparation.

#### Organized Learning

Proper planning to complete syllabus is the key to get a decent rank in JEE.

#### Test Series/Daily assignments

Give tests to analyze your progress and evaluate where you stand in terms of your JEE preparation.

## Question

### Solution

Correct option is

#### SIMILAR QUESTIONS

Q1

Let f and g be differentiable function satisfying g’ (a) = 2, g (a) = b andfog = I (identity function)

Then, f ’(b) is equal to:

Q2

If the function , (where [.] denotes the greatest integer function) is continuous and differentiable in (4, 6), then.

Q3

Let [.] denotes the greatest integer function and f (x) = [tan2x], then:

Q4

Let h(x) = min.{xx2} for every real number of x. Then:

Q5

Let f : R → R be a function defined by f (x) =  max. {xx3}. The set of all points where (x) is not differentiable is:

Q6

Let f (x) = Ï•(x) + ψ(x) and Ï•(a), ψ’(a) are finite and definite. Then:

Q7

If f (x) = x + tan and g(x) is the inverse of f (x) then g’ (x) is equal to: