Question

Solution

Correct option is

SIMILAR QUESTIONS

Q1

 

Let f and g be differentiable function satisfying g’ (a) = 2, g (a) = b andfog = I (identity function) 

Then, f ’(b) is equal to:

Q2

If the function , (where [.] denotes the greatest integer function) is continuous and differentiable in (4, 6), then.

Q3

Let [.] denotes the greatest integer function and f (x) = [tan2x], then:

Q4

Let h(x) = min.{xx2} for every real number of x. Then:

Q5

Let f : R → R be a function defined by f (x) =  max. {xx3}. The set of all points where (x) is not differentiable is:

Q6

Let f (x) = Ï•(x) + ψ(x) and Ï•(a), ψ’(a) are finite and definite. Then:

Q7

If f (x) = x + tan and g(x) is the inverse of f (x) then g’ (x) is equal to: