Question

Solution

Correct option is

SIMILAR QUESTIONS

Q1

Let f (x) = Ï•(x) + ψ(x) and Ï•(a), ψ’(a) are finite and definite. Then:

Q2

If f (x) = x + tan and g(x) is the inverse of f (x) then g’ (x) is equal to:

Q3

If f (x) is differentiable function and (f (x). g(x)) is differentiable at x = a, then

Q4

 for all real x and y. If f ’ (0) exists and equals to –1and f (0) = 1, find f ’(x).

Q5

Now if it is given that there exists a positive real δ, such that f (h) = h for 0 < h < δ then find f’(x) and hence f (x).

Q6

Let f be an even function and f ’(0) exists, then find f’(0).