## Question

### Solution

Correct option is

Radical axis         S1 – S2 = 0            (common chord)

6x – 4y + 7 = 0          …(i)

Now system of coaxes circle

x2 + y2 + 2x(2 + 3λ) + 2y(1 – 2λ) + 1 + 7λ = α

Centre lies on equation (i) λ = 1/26

#### SIMILAR QUESTIONS

Q1

Find the equation of the tangents from the point A(3, 2) to the circle x2 +y2 + 4x + 6y + 8 = 0.

Q2

If two tangents are drawn from a point on the circle x2 + y2 = 25 to the circle x2 + y2 = 25. Then find the angle between the tangents.

Q3

Find the equation of diameter of the circle x2 + y2 + 2gx + 2fy + c = 0 which corresponds o the chord ax + by + λ = 0.

Q4

Examine if the two circle x2 + y2 – 2x – 4y = 0 and x2 + y2 – 8y – 4 = 0 touch each other externally or internally. Also the pointed contact.

Q5

Find the equation of the circle passing through (1, 1) and the point of intersection of circles.

x2 + y2 + 13x – 3y = 0 and 2x2 + 2y2 + 4x – 7y – 25 = 0

Q6

Find the equation of circle passing through the point of intersection of the circle x2 + y2 – 6x + 2y + 4 = 0 and x2 + y2 + 2x – 4y – 6 = 0 and whose centre lies on the line y = x.

Q7

Find the equation of the circle passing through the points of intersection of the circles x2 + y2 – 2x – 4y – 4 = 0 and x2 + y2 – 10x – 12y – 40 = 0.

Q8

Find the equation of circle through points of intersection of circle x2 + y2– 2x – 4y + 4 = 0 and the line x + 2y = 4 which touches the line x + 2y = 0.

Q9

Find the angle between the circles. S = x2 + y2 – 4x + 6y + 11 = 0 and

Q10

Find the locus of pole of the line lx + my + n = 0 with respect to the circle which touches y-axis at the origin.