Question

 

Find the co-ordinates of the limiting points of the system of circles determined by the two circles

  x2 + y2 + 5x + y + 4 = 0 and x2 + y2 + 10x – 4y – 1 = 0      

Solution

Correct option is

(–2, –1) and (0, –3)

 

The given circles are

                    

∴ Equation of the co-axial system of circles is S1 + λS2 = 0 

   

The centre of this circles is  

                  

  

Substituting these values of λ in (1), we get the points (–2, –1) and (0, –3) which are the required limiting points.

SIMILAR QUESTIONS

Q1

Find the equation of the circle passing through the point of intersection of the circles x2 + y2 – 6x + 2y + 4 = 0, x2 + y2 + 2x – 4y – 6 = 0 and with its centre on the line y = x.

Q2

Find the equation of the circle passing through the points of intersection of the circles x2 + y2 – 2x – 4y – 4 = 0 and x2 + y2 – 10x – 12y + 40 = 0 and whose radius is 4.

Q3

Find the equation of the circle through points of intersection of the circlex2 + y2 – 2x – 4y + 4 = 0 and the line x + 2y = 4 which touches the line x+ 2y = 0.

Q4

Find the circle whose diameter is the common chord of the circles x2 + y2+ 2x + 3y + 1 = 0 and x2 + y2 + 4x + 3y + 2 = 0.

Q5

 

Find the angle between the circles

Q6

Find the equation of the circle which cuts the circle x2 + y2 + 5x + 7y – 4 = 0 orthogonally, has its centre on the line x = 2 and passes through the point (4, –1).

Q7

 

Find the equations of the two circles which intersect the circles

        x2 + y2 – 6y + 1 = 0 and x2 + y2 – 4y + 1 = 0  

Orthogonally and touch the line 3x + 4y + 5 = 0.   

Q8

 

Find the radical centre of circles x2 + y2 + 3x + 2y + 1 = 0,

x2 + y2 – x + 6y + 5 = 0 and x2 + y2 + 5x – 8y + 15 = 0. Also find the equation of the circle cutting them orthogonally.

Q9

Find the radical centre of three circles described on the three sides 4x – 7y + 10 = 0, x + y – 5 = 0 and 7x + 4y – 15 = 0 of a triangle as diameters.

Q10

If the origin be one limiting point of a system of co-axial circles of whichx2 + y2 + 3x + 4y + 25 = 0 is a member, find the other limiting point.