Imagine A Planet Whose Diameter And Mass Are Both One-half Of Those Of Earth. The Day’s Surface Temperature Of This Planet Reaches Upto 800 K. Are Oxygen Molecules Possible In The Atmosphere Of This Planet? Give Calculation. (Escape Velocity On Earth’s Surface = 11.2 Km S–1, Boltzmann’s Constant K = 1.38 × 10–23 JK–1, Mass Of Oxygen Molecule = 5.3 × 10–26 kg.)

Why Kaysons ?

Video lectures

Access over 500+ hours of video lectures 24*7, covering complete syllabus for JEE preparation.

Online Support

Practice over 30000+ questions starting from basic level to JEE advance level.

Live Doubt Clearing Session

Ask your doubts live everyday Join our live doubt clearing session conducted by our experts.

National Mock Tests

Give tests to analyze your progress and evaluate where you stand in terms of your JEE preparation.

Organized Learning

Proper planning to complete syllabus is the key to get a decent rank in JEE.

Test Series/Daily assignments

Give tests to analyze your progress and evaluate where you stand in terms of your JEE preparation.

SPEAK TO COUNSELLOR ? CLICK HERE

Question

 

Imagine a planet whose diameter and mass are both one-half of those of earth. The day’s surface temperature of this planet reaches upto 800 K. Are oxygen molecules possible in the atmosphere of this planet? Give calculation. (Escape velocity on earth’s surface = 11.2 km s–1, Boltzmann’s constant

k = 1.38 × 10–23 JK–1, mass of oxygen molecule = 5.3 × 10–26 kg.)

Solution

Correct option is

0.79 km s–1

 

The escape velocity of a body from earth’s surface is

                       

Where Me and Re are mass and radius of the earth respectively. If mass of the given planet be MP and radius RP, then the escape velocity from the planet is given by   

                     

                 

The translation kinetic energy of an oxygen molecule at temperature T is  Therefore, if m be the mass and v the thermal velocity of an oxygen molecule, we have

                    

  

                           

                             

This velocity is less than the escape velocity. Hence oxygen molecules are possible in the atmosphere of this planet.

SIMILAR QUESTIONS

Q1

 

If the period of revolution of an artificial satellite just above the earth be Tand the density of earth be then prove that ρT2 is a universal constant. Also calculate the value of this constant. 

Q2

A space-craft is launched in a circular orbit near the earth. How much more velocity will be given to the space-craft so that it will go beyond the attraction force of the earth. (Radius of the earth = 6400 km, g = 9.8 m/s2).

Q3

An artificial satellite of mass 200 kg revolves around the earth in an orbit of average radius 6670 km. Calculate its orbital kinetic energy, the gravitational potential energy and the total energy in the orbital.

(Mass of earth = 6.0 × 1024 kg, G = 6.67 × 10–11 Nm2 kg –2). 

Q4

With what velocity must a body be thrown upward from the surface of the earth so that it reaches a height of 10 Re? Earth’s mass  and G = 6.67 × 10 –11 Nm2kg–2.

Q5

A rocket is launched vertically from the surface of the earth with an initial velocity of 10 km s–1. How far above the surface of the earth would it go? Mass of the earth = 6.0 × 1024 kg, radius = 6400 km and G = 6.67 × 10 –11 Nm2 kg –2  

Q6

The escape velocity of a body from earth is 11.2 km s–1. If the radius of a planet be half the radius of the earth and its mass be one-fourth that of earth, then what will be the escape velocity from the planet?

Q7

 

A body is at a height equal to the radius of the earth from the surface of the earth. With what velocity be it thrown so that it goes out of the gravitational field of the earth? Given:

N m2 kg–2.

Q8

A particle falls on the surface of the earth from infinity. If the initial velocity of the particle is zero and friction due to air is negligible, find the velocity of the particle when it reaches the surface of the earth. Also find its kinetic energy. (Radius of earth is 6400 km and g is 9.8 m/s2.)

Q9

 

A mass of  is to be compressed in the form of a sphere. The escape velocity from its surface is  What should be the radius of the sphere. Gravitational constant

Q10

A hollow spher is made of a lead of radius R such that its surface touches the outside surface of the lead sphere and passes through its centre. The mass of the lead sphere before hollowing was M. What is the force of attraction that this sphere would exert on a particle of mass which lies at a distance from the centre of the lead sphere on the straight line joining the centres of the sphere and the hollow (as shown in fig.)?