Question

 

The curve represented by

 

Solution

Correct option is

An ellipse

 

We have, 

        

  

  

Clearly, it represents an ellipse.

SIMILAR QUESTIONS

Q1

S(3, 4) and S’(9, 12) are two foci of an ellipse. If the foot of the perpendicular from S on a tangent to the ellipse has the coordinates (1, –4), then the eccentricity of the ellipse is  

Q2

The tangent at a point P(θ) to the ellipse  cuts the auxiliary circle at points Q and R. If QR subtends a right angle at the centre C of the ellipse, then the eccentricity of the ellipse is

Q3

Let d1 and d2 be the lengths of the perpendiculars drawn from fociS and S’ of the ellipse  to the tangent at any point P on the ellipse. Then, SP : SP’ = 

Q4

The eccentricity of an ellipse with centre at the origin and axes along the coordinate axes, is 1/2. If one of the directrices is x = 4, then the equation of the ellipse is  

Q5

If the tangents are drawn to the ellipse x2 + 2y2 = 2, then the locus of the mid-point of the intercept made by the tangents between the coordinate axes is

Q6

If A bar of given length moves with its extremities on two fixed straight lines at right angles, then the locus of any point on the bar describes a/an

Q7

The normal at a point P on the ellipse x2 + 4y2 = 16 meets the x-axis at Q. If M is the mid-point of the line segment PQ then the locus of M intersects the latusrectums of the given ellipse at the points    

Q8

The equation  represents an ellipse, if  

Q9

The curve with parametric equations 

Q10

Length of the major axis of the ellipse , is