Question

 

Find the equations to the straight lines passing through the point (2, 3) and equally inclined to the lines 3x – 4y – 7 = 0 and

12x – 5y + 6 = 0

Solution

Correct option is

9x – 7y + 3 = 0 and x + 9y – 41 = 0

 

Let m be the slope of the required line. Then its equation is  

        y – 3 = m(x – 2)                  …(i)

It is given that line (i) is equally inclined to the lines  

     3x – 4y – 7 = 0 and 12x – 5y + 6 = 0 then  

  

                                         

    

    

  

  

  

Putting these values of m in (i) we obtain the equations of required lines as 9x – 7y + 3 = 0 and x + 9y – 41 = 0.

SIMILAR QUESTIONS

Q1

Find the equation of the straight line passing through the point (2, 1) and through the point of intersecction of the lines x + 2y = 3 and 2x – 3y = 4.

Q2

The family of lines x(a + 2b) + y(+ 3b) = b passes through the point for all values of a and b. Find the point.

Q3

If 3a + 2b + 6c = 0 the family of straight lines ax + by + c = 0 passes through a fixed point. Find the coordinates of fixed point.

Q4

 

Find the equation of the line passing through the point of intersection of the lines

          x + 5y + 7 = 0, 3x + 2y – 5 = 0 and   

1. parallel to the line 7x + 2y – 5 = 0

2. perpendicular to the line 7x + 2y – 5 = 0

Q5

 

Find the equation of straight line which passes through the intersection of the straight lines  

        3x – 4y + 1 = 0 and 5x + y – 1 = 0 

and cuts off equal intercepts from the axes.

Q6

Find the orthocentre of the triangle of the triangle ABC whose angular points are A(1, 2), B(2, 3) and C(4, 3).  

Q7

 

If the orthocentre of the triangle formed by the lines

2x + 3y – 1 = 0, x + 2y – 1 = 0, ax + by – 1 = 0   is at origin, then find (a,b).

Q8

Find the equations of the straight lines passing through the point (2, 3) and inclined at π/4 radians to the line 2x + 3y = 5.

Q9

 

Find the equations of angular bisector bisecting the angle containing the origin and not containing the origin of the lines

4x + 3y – 6 = 0 and 5x + 12y + 9 = 0.

Q10

Find the equation of the bisector of the obtuse angle between the lines 3x– 4y + 7 = 0 and 12x + 5y – 2 = 0.