﻿   Consider points A, B, C and D with position vectors   respectively. Then, ABCD is a    : Kaysons Education

# Consider Points A, B, C and D with Position Vectors   respectively. Then, ABCD is A

#### Video lectures

Access over 500+ hours of video lectures 24*7, covering complete syllabus for JEE preparation.

#### Online Support

Practice over 30000+ questions starting from basic level to JEE advance level.

#### National Mock Tests

Give tests to analyze your progress and evaluate where you stand in terms of your JEE preparation.

#### Organized Learning

Proper planning to complete syllabus is the key to get a decent rank in JEE.

#### Test Series/Daily assignments

Give tests to analyze your progress and evaluate where you stand in terms of your JEE preparation.

## Question

### Solution

Correct option is

Rhombus

We have,

Clearly,

Hence, ABCD is a rhombus.

#### SIMILAR QUESTIONS

Q1

Consider âˆ†ABC and âˆ†A1B1C1 in such a way that  and M, N, M1, N1 be the mid-point of AB, BC, A1B1 and B1C1 respectively. Then,

Q2

Let ABCD be a parallelogram whose diagonals intersect at P and let O be the origin, then  equals

Q3

If A, B, C, D be any four points and E and F be the middle points of AC and BD respectively, then  is equal to

Q4

Given that the vectors  are non-collinear, the values of x and yfor which the vector equality  holds true if  are

Q5

Let  be three non-zero vectors, no two of which are collinear. If the vector  is collinear with  is collinear with  is equal to

Q7

If the position vector of the three points are ,

then the three points are

Q8

Three points with position vectors  will be collinear, if there exist scalars xyz such that

Q9

The position vectors of the vertices ABC of a âˆ†ABC are  respectively. The length of the bisector AD of the angle BAC where D is on the line segment BC, is

Q10

If the vectors  are the sides of a âˆ†ABC, then length of the median through A is