Consider Points A, B, C and D with Position Vectors   respectively. Then, ABCD is A   

Why Kaysons ?

Video lectures

Access over 500+ hours of video lectures 24*7, covering complete syllabus for JEE preparation.

Online Support

Practice over 30000+ questions starting from basic level to JEE advance level.

Live Doubt Clearing Session

Ask your doubts live everyday Join our live doubt clearing session conducted by our experts.

National Mock Tests

Give tests to analyze your progress and evaluate where you stand in terms of your JEE preparation.

Organized Learning

Proper planning to complete syllabus is the key to get a decent rank in JEE.

Test Series/Daily assignments

Give tests to analyze your progress and evaluate where you stand in terms of your JEE preparation.

SPEAK TO COUNSELLOR ? CLICK HERE

Question

 

Consider points ABC and D with position vectors 

 respectively. Then, ABCD is a   

Solution

Correct option is

Rhombus

 

We have,

       

     

     

Clearly,   

Hence, ABCD is a rhombus.

Testing

SIMILAR QUESTIONS

Q1

Consider âˆ†ABC and ∆A1B1C1 in such a way that  and M, N, M1, N1 be the mid-point of AB, BC, A1B1 and B1C1 respectively. Then,  

Q2

Let ABCD be a parallelogram whose diagonals intersect at P and let O be the origin, then  equals

Q3

If A, B, C, D be any four points and E and F be the middle points of AC and BD respectively, then  is equal to

Q4

Given that the vectors  are non-collinear, the values of x and yfor which the vector equality  holds true if  are  

Q5

Let  be three non-zero vectors, no two of which are collinear. If the vector  is collinear with  is collinear with  is equal to 

Q7

 

If the position vector of the three points are ,

 then the three points are 

Q8

Three points with position vectors  will be collinear, if there exist scalars xyz such that   

Q9

The position vectors of the vertices ABC of a âˆ†ABC are  respectively. The length of the bisector AD of the angle BAC where D is on the line segment BC, is     

Q10

If the vectors  are the sides of a âˆ†ABC, then length of the median through A is