Question

 

If  are three non-zero non-null vectors and  is any vector in space, then

    

Solution

Correct option is

 

We have,  

                    

Taking product successively with , we obtain   

      

Substituting the values of xyz in (i), we get

     

SIMILAR QUESTIONS

Q1

The number of distinct values of λ, for which the vectors  are coplanar, is 

Q2

 

If  are unit coplanar vectors, then   

       

Q3

 

If the vectors  are non-coplanar and lmn are distinct scalars such that   

     

Q4

 

If the vectors  are non-coplanar and lmn are distinct scalars such that   

     

Q5

 

For any three vectors, , the value of 

            

Q6

For any three vectors  the value of  is

Q7

 are three non-coplanar vectors, then  

Q8

 are unit coplanar vectors, then the scalar triple product  

Q9

 

Let  be three non-zero non-coplanar vectors and  be three vectors given by   

   

If the volume of the parallelopiped determined by  is V1 and that of the parallelopiped determined by  is V2, then V2 : V1 = 

Q10

 

If  are three non-coplanar vectors represented by non-current edges of a parallelopiped of volume 4 units, then the value of