Question

 

The locus rectum of the hyperbola

9x2 – 16y2 – 18x – 32y – 151 = 0 is

Solution

Correct option is

 

9x2 – 16y2 – 18x – 32y – 151 = 0

⇒  9(x – 1)2 – 16(y – 1)2 = 144

SIMILAR QUESTIONS

Q1

The product of perpendicular drawn from any point on the hyperbola to its asymptotes is

Q2

 

The locus of the point of intersection of the lines 

, where m is a parameter, is always

Q3

The condition that the straight line lx + my = n may be a normal to the hyperbola b2x2 – a2y2 = a2b2 is

Q4

If the eccentricities of the hyperbolas  and  be eand e1, then 

Q5

The eccentricity of the conjugate hyperbola of the hyperbola x2 – 3y2 = 1 is

Q6

The distance between the directrices of a rectangular hyperbola is 10 units, then distance between its foci is

Q7

The ,locus of the middle points of portions of the tangents to the hyperbola , intercepted between the axes is

Q8

If the polar of a point with respect to  toches the hyperbola , then the locus of the point is

Q9

The locus of pole of any tangent to the circle x2 + y2 = 4 w.r.t. the hyperbola x2 – y= 4 is the circle