﻿ If the two lines x – a = 0 and y – b =  0 are conjugate w.r.t. the hyperbolaxy = c2, then the locus of (a, b) is : Kaysons Education

# If The Two Lines x – A = 0 And y – B =  0 Are Conjugate W.r.t. The Hyperbolaxy = c2, Then The Locus Of (a, B) Is

#### Video lectures

Access over 500+ hours of video lectures 24*7, covering complete syllabus for JEE preparation.

#### Online Support

Practice over 30000+ questions starting from basic level to JEE advance level.

#### National Mock Tests

Give tests to analyze your progress and evaluate where you stand in terms of your JEE preparation.

#### Organized Learning

Proper planning to complete syllabus is the key to get a decent rank in JEE.

#### Test Series/Daily assignments

Give tests to analyze your progress and evaluate where you stand in terms of your JEE preparation.

## Question

### Solution

Correct option is

xy = 2c2

x – a = 0                                                        ……. (1)

y – b =  0                                                       ……. (2)

are conjugate w.r.t.

Let pole of (1) be (x1y1) w.r.t.                       ....... (3)

Then its polar is x1y + xy= 2c2                      …… (4)

Compare (1) and (4)

Now line (1) and (2) are conjugate and so pole of one line lies on the other line

⇒  (x1y1) lies on (2)         ⇒ y1 – b =0

∴ locus of (a, b) is xy = 2c2

#### SIMILAR QUESTIONS

Q1

The eccentricity of the hyperbola whose latus rectum is half of its transverse axis is

Q2

The number of tangents to the hyperbola  through (4, 3) is

Q3

The equation of the hyperbola referred to it axes as axes of coordinates whose latus rectum is 4 and eccentricity is 3, is

Q4

If a rectangular hyperbola whose center is C, is cut by any circle of radiusr in the four points P, Q, R, S, then

CP2 + CQ2 + CR2 + CS2 =

Q5

If θ is the angle between the asymptotes of the hyperbola   with eccentricity e, then

Q6

The equation of the tangents to the conic 3x2 – y2 = 3 perpendicular to the line x + 3y = 2 is

Q7

If P is a point on the hyperbola 16x– 9y2 = 144 whose foci are S1 andS2, then PS1 – PS2 =

Q8

The length of the transverse axis of a hyperbola is 7 and it passes through the point (5, –2). The equation of the hyperbola is

Q9

The locus of the point of intersection of the lines (x + y)t = a and x – y = at, where t is the parameter, is

Q10

If PQ is a double ordinate of the hyperbola  such that OPQ is an equilateral triangle, O being the center of the hyperbola. Then the eccentricity e of the hyperbola satisfies