Question

Solution

Correct option is

SIMILAR QUESTIONS

Q1

If the function , (where [.] denotes the greatest integer function) is continuous and differentiable in (4, 6), then.

Q2

Let [.] denotes the greatest integer function and f (x) = [tan2x], then:

Q3

 

Let f be a real function satisfying 

          f (x + z) = f (xf (yf (z

for all real xyz . If f (2) = 4 and f’ (0) = 3. Then find f (0) and f’ (2).

Q4

Let f : R → R be a function defined by f (x) =  max. {xx3}. The set of all points where (x) is not differentiable is:

Q5

Let f (x) = Ï•(x) + ψ(x) and Ï•(a), ψ’(a) are finite and definite. Then:

Q6

If f (x) = x + tan and g(x) is the inverse of f (x) then g’ (x) is equal to:

Q7

If f (x) is differentiable function and (f (x). g(x)) is differentiable at x = a, then