Question

Solution

Correct option is

SIMILAR QUESTIONS

Q1

 

Let f be a real function satisfying 

          f (x + z) = f (xf (yf (z

for all real xyz . If f (2) = 4 and f’ (0) = 3. Then find f (0) and f’ (2).

Q2

Let h(x) = min.{xx2} for every real number of x. Then:

Q3

Let f : R → R be a function defined by f (x) =  max. {xx3}. The set of all points where (x) is not differentiable is:

Q4

Let f (x) = Ï•(x) + ψ(x) and Ï•(a), ψ’(a) are finite and definite. Then:

Q5

If f (x) is differentiable function and (f (x). g(x)) is differentiable at x = a, then

Q6

 

        

Determine the value of ‘a’ if possible, so that the function is continuous at x = 0.

Q7

 for all real x and y. If f ’ (0) exists and equals to –1and f (0) = 1, find f ’(x).