Question

The slope of the normal at the point (at2, 2at) of parabola y2 = 4ax  is

Solution

Correct option is

t

y2 = 4ax       at (at2, 2at

.

 

SIMILAR QUESTIONS

Q1

If the tangent at a point on the ellipse  meets the auxillary circle in two points, the chords joining them subtends a right angle at the center; then the eccentricity of the ellipse is given by

Q2

The line passing through the extremity A of the major axis and extremity B of the minor axis of the ellipse. x2 + 9y2 = 9, meets the auxillary circle at the point M, then the area of the triangle with vertices at A, M and the origin is

Q3

The normal at a point P on the ellipse x2 + 4y2 = 16 meets the x-axis at Q, then locus of M intersects the latus rectums of the given ellipse at the points.

Q4

Let a and b be non-zero real numbers. Then the equation (ax2 + by2 + c)(x2 – 5xy + 6y2) = 0 represents

Q5

The pints of intersection of the two ellipse x2 + 2y2 – 6x – 12y + 23 = 0 and 4x2 + 2y2 – 20x – 12y + 35 = 0.

Q6

The tangent at any point P of the hyperbola  makes an intercept of length p between the point of contact and the transverse axis of the hyperbola, p1p2 are the lengths of the perpendiculars drawn from the foci on the normal at P, then

Q7

The length of chord of contact of the tangents drawn from the point (2, 5) to the parabola y2 = 8x, is 

Q8

The locus of a point whose some of the distance from the origin and the line x = 2 is 4 units, is

Q9

The length of the subnormal to the parabola y2 = 4ax at any point is equal to

Q10

Equation of locus of a point whose distance from point (a, 0) is equal to its distance from y-axis is