## Question

### Solution

Correct option is

y2 – 2ax + a2 = 0

P = (h, k) be coordinates of a moving point.

Then distance between P and (a, 0) = distance of P from y-axis (x = 0)  Locus of (h, k) is y2 – 2ax + a2 = 0

#### SIMILAR QUESTIONS

Q1

The line passing through the extremity A of the major axis and extremity B of the minor axis of the ellipse. x2 + 9y2 = 9, meets the auxillary circle at the point M, then the area of the triangle with vertices at A, M and the origin is

Q2

The normal at a point P on the ellipse x2 + 4y2 = 16 meets the x-axis at Q, then locus of M intersects the latus rectums of the given ellipse at the points.

Q3

Let a and b be non-zero real numbers. Then the equation (ax2 + by2 + c)(x2 – 5xy + 6y2) = 0 represents

Q4

The pints of intersection of the two ellipse x2 + 2y2 – 6x – 12y + 23 = 0 and 4x2 + 2y2 – 20x – 12y + 35 = 0.

Q5

The tangent at any point P of the hyperbola makes an intercept of length p between the point of contact and the transverse axis of the hyperbola, p1p2 are the lengths of the perpendiculars drawn from the foci on the normal at P, then

Q6

The length of chord of contact of the tangents drawn from the point (2, 5) to the parabola y2 = 8x, is

Q7

The locus of a point whose some of the distance from the origin and the line x = 2 is 4 units, is

Q8

The length of the subnormal to the parabola y2 = 4ax at any point is equal to

Q9

The slope of the normal at the point (at2, 2at) of parabola y2 = 4ax  is

Q10

Through the vertex O of parabola y2 = 4x, chords OP and OQ are drawn at right angles to one another. The locus of the middle point of PQ is