﻿ If a normal drawn to the parabola y2 = 4ax at the point (a, 2a) meets parabola again on (at2, 2at), then the value of t will be : Kaysons Education

# If A Normal Drawn To The Parabola y2 = 4ax at The Point (a, 2a) Meets Parabola Again On (at2, 2at), Then The Value Of t will Be

#### Video lectures

Access over 500+ hours of video lectures 24*7, covering complete syllabus for JEE preparation.

#### Online Support

Practice over 30000+ questions starting from basic level to JEE advance level.

#### Live Doubt Clearing Session

Ask your doubts live everyday Join our live doubt clearing session conducted by our experts.

#### National Mock Tests

Give tests to analyze your progress and evaluate where you stand in terms of your JEE preparation.

#### Organized Learning

Proper planning to complete syllabus is the key to get a decent rank in JEE.

#### Test Series/Daily assignments

Give tests to analyze your progress and evaluate where you stand in terms of your JEE preparation.

## Question

### Solution

Correct option is

–3

Given    y2 = 4ax                           … (1)

P(a, 2a), Q(at2, 2at)

(1)

Equation of normal at P is

x + y = 3a, it passes through Q(at2, 2at)

at2 + 2at = 3a   t = 1, –3

But t = 1 correspond to point P,

t = –3 is only required value.

#### SIMILAR QUESTIONS

Q1

The line x – y + 2 = 0 touches the parabola y2 = 8x at the point

Q2

If t is the parameter for one end of a focal chord of the parabola y2 = 4ax, then its length is

Q3

The point on the parabola y2 = 8x at which the normal is inclined at 600 to the x-axis has the coordinates

Q4

The length of the latus rectum of the parabola 9x2 – 6x + 36y + 19 = 0 is

Q5

The equation of a circle passing through the vertex the extremities of the latus rectum of the parabola y2 = 8x  is

Q6

If the parabola y2 = 4ax passes through the pint (1, –2), then the tangent at this point is

Q7

The equation of normal at the point  to the parabola y2 = 4ax, is

Q8

The equation of tangent at the point (1, 2) to the parabola y2 = 4ax, is

Q9

If a tangent of y2 = ax made angle of 450 with the x-axis, then its point of contact will be

Q10

If the straight line x + y = 1 touches the parabola y2 – y + x = 0, then the coordinates of the point of contact are