Question

The equation of the normal to the hyperbola y2 = 4x, which passes through the point (3, 0), is

Solution

Correct option is

All of these

        y2 = 4x                                  … (1)

say a = 1. Any normal of (1) is

       y = mx – 2am – am3           … (2)

(2) Passes through (3, 0)      

. Put in (2)

     = 0, y = x – 3, y = 3 – x

SIMILAR QUESTIONS

Q1

The angle of intersection between the curves y2 = 4x and x2 = 32y at point (16, 8) is

Q2

The pole of the line lx + mx + n = 0 with respect to the parabola y2 = 4ax is

Q3

Two tangent are drawn from the point (–2, –1) to the parabola y2 = 4x. if  is the angle between them, then 

Q4

The conic represented by the equation  is

Q5

If (4, 0) is the vertex and y-axis, the directrix of a parabola then its focus is

Q6

The straight line y = mx + c touches the parabola y2 = 4a(x + a) if

Q7

The focus of the parabola x2 – 2x – y + 2 = 0 is

Q8

If P1Q1 and P2Q2 are two focal chords of the parabola y2 = 4ax, then the chords P1P2 and Q1Q2 intersect on the

Q9

The condition that the line  be a normal to the parabola  

y2 = 4ax is

Q10

PQ is a double of the parabola y2 = 4ax. The locus of the points of trisection of PQ is