Question

Angle between tangents drawn from the point (1, 4) to the parabola y2 = 4is

Solution

Correct option is

Any tangent to parabola y2 = 4x is

      as a = 1. It passes through (1, 4)

  m2 – 4m + 1 = 0

      

SIMILAR QUESTIONS

Q1

The equation of the directrix of the parabola y2 + 4y + 4x + 2 = 0 is  

Q2

If the line x – 1 = 0 is the directrix of the parabola y– ky + 8 = 0, then one of the of the value of k is

  

Q3

Equation of the parabola whose axis is y = x distance from origin to vertex is  and distance form origin to focus is , is (Focus and vertex lie in Ist quadrant) :

Q4

The focal chord of y2 = 16x is tangent to (x – 6)2 + y2 = 2, then the possible values of the slope of this chord, are

Q5

The curve described parametrically by x = t2 + t + 1, y = t2 – + 1 represents.

Q6

The locus of the mid-point of the line segment joining the focus to a moving point on the parabola y2 = 4ax is another parabola with directrix

Q7

If  and the line 2bx + 3cy + 4d = 0 passes through the points of intersection of the parabolas y2 = 4ax and x2 = 4ay, then

   

Q8

Let P be the point (1, 0) and Q a point on the locus y2 = 8x. The locus of mid-point of PQ is

Q9

Consider the two curves C1 : y2 = 4xC2 : x2 + y2 – 6x + 1 = 0. Then,

Q10

The angle between the tangents drawn from the origin to the parabola y2 = 4a(x – a) is