Question

For all complex numbers z1z2 satisfying , the minimum value of 

Solution

Correct option is

2

The two circles are  and it passes through origin, the centre of C1   

       

Hence circle C2 lies inside circle C1  

Therefore minimum distance between them is   

        .

SIMILAR QUESTIONS

Q1

Solve it 

Q2

Find all the values of the given root:

            

Q3

 are the n, nth roots of unity, 

Q4

If ω is fifth root of unity, then  

     

Q5

, then find the equation whose roots are p and q.

Q6

Find the roots of the equation , whose real part is negative.

Q7

Let z1 and z2 be nth roots of unity which subtend a right angle at the origin. Then n must be of the form

  

Q9
Q10

, show that z1z2z3 are the vertices of an equilateral triangle inscribed in a unit circle.