The Length Of Normal Chord Which Subtends An Angle Of 900 at The Vertex Of The Parabola y2 = 4x is

Why Kaysons ?

Video lectures

Access over 500+ hours of video lectures 24*7, covering complete syllabus for JEE preparation.

Online Support

Practice over 30000+ questions starting from basic level to JEE advance level.

Live Doubt Clearing Session

Ask your doubts live everyday Join our live doubt clearing session conducted by our experts.

National Mock Tests

Give tests to analyze your progress and evaluate where you stand in terms of your JEE preparation.

Organized Learning

Proper planning to complete syllabus is the key to get a decent rank in JEE.

Test Series/Daily assignments

Give tests to analyze your progress and evaluate where you stand in terms of your JEE preparation.



The length of normal chord which subtends an angle of 900 at the vertex of the parabola y2 = 4x is


Correct option is

We have the following

For normal chord                … (1)

Also chord subtends an angle of 900 at vertex

   t1 t2 = – 4                                              … (2)

By (1). t1 t2 =  – t12 – 2  or  – 4 = t12 – 2         t12  = 2

   PQ2 = a2(t12 – t22)2 + 4a2(t1 – t2)2


      PQ2 = 108  or  PQ = .



A tangent and a normal are drawn at the point P(16, 16) of the parabola y2 = 16x which cut the axis of the parabola at the points A and B respectively. If the center of the circle through P, A and B is C, then angle between PC and axis of x is


If x + y = k is normal to y2 = 12x, then k is


A circle drawn on any focal chord AB of the parabola y2 = 4axas diameter cuts the parabola again at and D. If the parameters of the points A, B, C, D be t1, t2 t3 and t1 respectively, then the value of t3 t4 is


A focal chord of parabola y2 = 4x is inclined at an angle of  with the +ive direction of x-axis, then the slope of normal drawn at the ends of focal chord will satisfy the equation


If two different tangents of y2 = 4x are the normal’s to the parabola x2 = 4ay, then


Find the locus of the mid-points of the chord of the parabola y2 = 4ax which subtend a right angle at the vertex.


If the parabola C and D intersect at a point A on the line L1, then equation of the tangent point L at A to the parabola D is


If a > 0, the angle subtended by the chord AB at the vertex of the parabola is


P is a point on the circle C, the perpendicular PQ to the major axis of the ellipse E meets the ellipse at M, then  is equal to


Equation of the diameter of the ellipse conjugate to the diameter respected by L is