Question

 is a polynomial of degree 5, then n

Solution

Correct option is

11

           

          

Since, this polynomial is given to be of degree 5, therefore, n can be 11 or 12.

SIMILAR QUESTIONS

Q1

Evaluate C1 – 2. C2 + 3. C3 – 4. C4 +….+ (– 1)n+1n. Cn 

Q2

The digit at unit place in the number 171995 + 111995 – 71995 is

Q3

If the sum of the coefficients in the expression of (1 + 2x)n is 6561. The greatest term in the expression at x = 1/2 is

Q4

The number of terms in the expression of (a + b + c)n, where n Ïµ N, is

Q5

The number of terms which are free from fractional powers in the expansion of (a1/5 + b2/3)45a ≠ b is

Q6

If n is an odd natural, then  equals

Q7
Q8

The coefficient of xm in (1 + x)r + (1 + x)r+1 + (1 + x)r+2 +….+ (1 + x)nr≤ m ≤ n is

Q9

 respect to x, is

Q10

If in the expression of (1 + x)m (1 – x)n. the coefficient of x and x2 are 3 and – 6 respectively, then m is