Question

Coefficients of x10 in the expansion of (1 + x2 – x3)8 is

Solution

Correct option is

476

    

                                                 

In the above expansion we have to find the coefficient of x10 which will occur in the following two terms:

              

              

              

              

SIMILAR QUESTIONS

Q1

The coefficient of x8 in the expression of 

Q2

The coefficient of xn in the expansion of (1 + x) (1 – x)n is

Q4

Sum of coefficient in the expansion of (x + 2y + z)10 is

Q5

If the sum of the coefficients in the expansion of (1 – 3x + 10x2)n is A and it the sum of the coefficients in the expansion of (1 + x2)is 

B, then

Q6

The coefficient t24 in (1 + t2)12 (1 + t12) (1 + t24) is

Q7

For natural number mn if (1 – y)m (1 + y)n = 1 + ay + ay2 +….. and a1 = a2 = 10, them (mn) is

Q8

If x is + ive, the first – ive term in the expansion of (1 + x)27/5 is:

Q9

Coefficients of x11 in the expansion of (2x2 + x – 3)6 is

Q10

The expression [x + (x3 - 1)1/2]5 + [x – (x3 – 1)1/2]5 is a polynomial of degree