﻿  If the line x + 2ay + a = 0, x + 3by + b = 0 and x + 4cy + c = 0 are concurrent, then a, b, c are in : Kaysons Education

# If The Line x + 2ay + a = 0, x + 3by + b = 0 And x + 4cy + C = 0 Are Concurrent, Then a, b, c are In

#### Video lectures

Access over 500+ hours of video lectures 24*7, covering complete syllabus for JEE preparation.

#### Online Support

Practice over 30000+ questions starting from basic level to JEE advance level.

#### Live Doubt Clearing Session

Ask your doubts live everyday Join our live doubt clearing session conducted by our experts.

#### National Mock Tests

Give tests to analyze your progress and evaluate where you stand in terms of your JEE preparation.

#### Organized Learning

Proper planning to complete syllabus is the key to get a decent rank in JEE.

#### Test Series/Daily assignments

Give tests to analyze your progress and evaluate where you stand in terms of your JEE preparation.

## Question

### Solution

Correct option is

H.P.

#### SIMILAR QUESTIONS

Q1

If one of the lines given by the equation 2x2 + axy + 3y2 = 0 coincide with one of those given by 2x2 + bxy – 3y2 = 0 and the other lines represented by them be perpendicular, then

Q2

The equation x – y = 4 and x2 + 4xy + y2 = 0 represent the sides of

Q3

If the equation of the pair of straight lines passing through the point (1, 1), one making an angle θ with the positive direction of x-axis and the other making the same angle with the positive direction of y-axis is x2 – (a + 2)xy + y2 + a(x + y – 1) = 0,

a ≠ –2, then the value of sin 2θ is

Q4

If θ1 and θ2 be the angles which the lines (x2 + y2) (cos2 θ sin2α + sin2 θ) = (x tan α – y sin θ)2 make with axis ofx, then if θ = π/6,

tan θ1 + tan θ2 is equal to

Q5

If two of the lines represented by

x4 + x3 y + cx2 y2 – xy3 + y4 = 0

bisect the angle between the other two, then the value of c is

Q6

The straight line is x + y = 0, 3x + y – 4 = 0 and x + 3y – 4 = 0 from a triangle which is

Q7

If the line 2 (sin a + sin bx – 2 sin (a – by = 3 and 2 (cos a + cos bx + 2 cos (a – by = 5 are perpendicular, then sin 2a+ sin2b is equal to

Q8

If p1p2 denote the lengths of the perpendiculars from the origin on the lines x sec α + y cosec α = 2a and

x cos α + y sin α = a cos 2α respectively, then  is equal to

Q9

The locus of the point of intersection of the lines x sin θ + (1 – cos θ) y = a sin θ and x sin θ – (1 + cos θ) y + a sin θ = 0 is

Q10

The straight lines 4x – 3y – 5 = 0, x – 2y – 10 = 0, 7x + 4y – 40 = 0 and x + 3y + 10 = 0 form the sides of a