﻿ If p1, p2 denote the lengths of the perpendiculars from the origin on the lines x sec α + y cosec α = 2a and x cos α + y sin α = a cos 2α respectively, then  is equal to : Kaysons Education

# If p1, p2 denote The Lengths Of The Perpendiculars From The Origin On The Lines x sec α + y cosec α = 2a and X cos α + y sin α = a cos 2α Respectively, Then  is Equal To

#### Video lectures

Access over 500+ hours of video lectures 24*7, covering complete syllabus for JEE preparation.

#### Online Support

Practice over 30000+ questions starting from basic level to JEE advance level.

#### Live Doubt Clearing Session

Ask your doubts live everyday Join our live doubt clearing session conducted by our experts.

#### National Mock Tests

Give tests to analyze your progress and evaluate where you stand in terms of your JEE preparation.

#### Organized Learning

Proper planning to complete syllabus is the key to get a decent rank in JEE.

#### Test Series/Daily assignments

Give tests to analyze your progress and evaluate where you stand in terms of your JEE preparation.

## Question

### Solution

Correct option is

4 cosec2 4α

#### SIMILAR QUESTIONS

Q1

If the equation of the pair of straight lines passing through the point (1, 1), one making an angle θ with the positive direction of x-axis and the other making the same angle with the positive direction of y-axis is x2 – (a + 2)xy + y2 + a(x + y – 1) = 0,

a ≠ –2, then the value of sin 2θ is

Q2

If θ1 and θ2 be the angles which the lines (x2 + y2) (cos2 θ sin2α + sin2 θ) = (x tan α – y sin θ)2 make with axis ofx, then if θ = π/6,

tan θ1 + tan θ2 is equal to

Q3

If two of the lines represented by

x4 + x3 y + cx2 y2 – xy3 + y4 = 0

bisect the angle between the other two, then the value of c is

Q4

The straight line is x + y = 0, 3x + y – 4 = 0 and x + 3y – 4 = 0 from a triangle which is

Q5

If the line x + 2ay + a = 0, x + 3by + b = 0 and x + 4cy + c = 0 are concurrent, then abc are in

Q6

If the line 2 (sin a + sin bx – 2 sin (a – by = 3 and 2 (cos a + cos bx + 2 cos (a – by = 5 are perpendicular, then sin 2a+ sin2b is equal to

Q7

The locus of the point of intersection of the lines x sin θ + (1 – cos θ) y = a sin θ and x sin θ – (1 + cos θ) y + a sin θ = 0 is

Q8

The straight lines 4x – 3y – 5 = 0, x – 2y – 10 = 0, 7x + 4y – 40 = 0 and x + 3y + 10 = 0 form the sides of a

Q9

If two vertices of a triangle are (5, –1) and (–2, 3), and the orthocenter lies at the origin, the coordinate of the third vertex are

Q10

Equation of a line passing through the intersection of the lines

x + 2y – 10 = 0 and 2x + y + 5 = 0 is