Question

Find the equation of the straight line passing through the points (3, 3) and (7, 6). What is the length of the portion of the line intercepted between the axes of the coordinates.

Solution

Correct option is

5/4

The equation of the line through (x1y1) ≡ (3, 3) and

(x2y2) ≡ (7, 6) is:

           

  

⇒       Line cuts X-axis in (–1, 0) and Y-axis in (0, 3/4)

          (–1, 0) ≡ (a, 0)       and         (0, 3/4) ≡ (0, b)  

       

                  

SIMILAR QUESTIONS

Q1

If abc are all distinct, then the equations (b – c)x + (c – a)y + a – b = 0 and (b3 – c3)x + (c3 – a3)y + a3 – b3 = 0 represent the same line if

Q2

If the pair of lines x2 – 2pxy – y2 = 0 and x2 – 2qxy – y2 = 0 are such that each pair bisects the angle between the other pair, then pq equals  

Q3

Angles made with x-axis by the two lines through the point  (1, 2) and cutting the line x + y = 4 at a distance  from the point (1, 2) are

Q4

If the algebraic sum of the perpendicular distances of a variable line from the points (0, 2), (2, 0) and (1, 1) is zero, then the line always passes through the point

Q5

 be three points. Then the equation of the bisector of angle PQR is

Q6

Find the area of triangle ABC with vertices A (aa2), B (bb2), C (cc2).

Q7

A straight line passes through (2, 3) and the portion of the line intercepted between the axes is bisected at this point. Find its equation

Q8

Find the slope (m), intercepts on X axis, intercept on Y axis of the line 3x+ 2y – 12 = 0. Also trace the line on XY plane.

Q9

Given the triangle A (10, 4), B(–4, 9), C(–2, 1), find the equation of median through B.

Q10

Given the triangle with vertices A (–4, 9), B (10, 4), C (–2, –1). Find the equation of the altitude through A.