If t1, t2, t3 are Distinct, Then The Points  are Collinear If:

Why Kaysons ?

Video lectures

Access over 500+ hours of video lectures 24*7, covering complete syllabus for JEE preparation.

Online Support

Practice over 30000+ questions starting from basic level to JEE advance level.

Live Doubt Clearing Session

Ask your doubts live everyday Join our live doubt clearing session conducted by our experts.

National Mock Tests

Give tests to analyze your progress and evaluate where you stand in terms of your JEE preparation.

Organized Learning

Proper planning to complete syllabus is the key to get a decent rank in JEE.

Test Series/Daily assignments

Give tests to analyze your progress and evaluate where you stand in terms of your JEE preparation.

SPEAK TO COUNSELLOR ? CLICK HERE

Question

If t1t2t3 are distinct, then the points  are collinear if:

Solution

Correct option is

t1 + t2 + t3 = 0

               

               

Points ABC are collinear. It means area formed by the triangle ABC = 0  

 

   

  

⇒     t1 + t2 + t3 = 0     [∵ t1t2 and t3 distinct real number]

SIMILAR QUESTIONS

Q1

Find the equation of perpendicular bisector of the line joining the points (1, 1) and (2, 3). 

Q2

Find the coordinates of the foot of the perpendicular from the point (2, 3) on the line y = 3x + 4.

Q3

Find the equation of the line passing through (ab) and parallel to px +qy + 1 = 0.  

Q4

Find the equation of the line perpendicular to 3x + 4y + 1= 0 and passing through (1, 1).

Q5

Find the distance of line h (x + h) + k (y + k) = 0 from the origin.

Q6

Determine the distance between the lines : 6x + 8y – 45 = 0 and 3x + 4y – 5 = 0.

Q7

The algebraic sum of the perpendicular distances from A(x1y1), B(x2,y2) and C(x3y3) to a variable line is zero, then the line passes through:

Q8

If A (cos α, sin α), B (sin α, –cos α), C (1, 2) are the vertices of a ΔABC, then as α varies the locus of its centroid is:

Q9

The image of point (1, 3) in the line x + y – 6 = 0 is: 

Q10

A and B are two fixed points. The vertex C of a Δ ABC moves such that cot A + cot B = constant. Locus of C is a straight line: