Question

Let A be a set containing 10 distinct elements, then the total number of distinct functions from A to A is

Solution

Correct option is

1010

Each element can go to itself and the rest as well. Thus it can have 10 images. Similarly we can argue for other elements. Hence the total number of distinct functions from A to A is 1010.

SIMILAR QUESTIONS

Q1

Given 

Q3

For real x, let (x) = x3 + 5x +1, then

Q4

 

 

Q5

Set A has 3 elements and set B has 4 elements. The number of injections that can be defined from to is

Q6

The number of surjections from A = {1, 2,...n},onto = {a, b} is

Q7

Let E = {1, 2, 3, 4} and F {1, 2}. Then the number of onto function fromE to F is

Q8

Let and be two finite sets having m and n elements respectively. Then the total number of mappings from A and B is

Q9

The total number of injective mappings from a set with m elements of distinct functions from A to A is

Q10

If (x) = sin x = +cos x, g (x) = x– 1, then g ((x)) is invertible in domain