Question

The polynomial p(x) is such that for any polynomial q(x) we have p(q(x) = q(p(x). Then p(x) is

Solution

Correct option is

Odd & of odd degree

Let q (x) = k, where k R

and 

and     

SIMILAR QUESTIONS

Q1

The domain of the function

                   

Q2

Then its domain is given by

Q3

Domain of definition of the function

            

Q4
Q5

The domain of definition of the function y (x) given by the equation 

Q6

Range of 

Q7

The period of   is

Q8

If (x) and g(x) be periodic and non-periodic function respectively, then f(g(x)) is

 

Q9

Let (x) and g(x) be bijective function where :{a, b, c, d}{1, 2, 3, 4}and g:{3, 4, 5, 6}{w, x, y, z) respectively. The number of elements in the range set of g(f (x)) is

Q10

If denotes greatest integer function, then