Question

Find the domain of single valued function y = (x) given by the equation 10x + 10y = 10.

Solution

Correct option is

x Ïµ (–∞, 1)

Given:

               10x + 10y = 1

⇒            10y = 10 – 10x    

Now,     101 – 10x > 0  

⇒         101 > 10x

⇒          1 > x

Hence, domain of single valued function 

              y = (x)  ⇒      x < 1

SIMILAR QUESTIONS

Q1

Let (x) and g(x) be bijective function where :{a, b, c, d}{1, 2, 3, 4}and g:{3, 4, 5, 6}{w, x, y, z) respectively. The number of elements in the range set of g(f (x)) is

Q2

The polynomial p(x) is such that for any polynomial q(x) we have p(q(x) = q(p(x). Then p(x) is

Q3

If denotes greatest integer function, then

Q4

Infinite set, then period of the function cannot be

Q5

If a polynomial of degree n satisfies 

then (x) is

Q6

 

then

Q7

In the given figure find the domain, co-domain and range.

Q8

Find whether (x) = x3 forms a mapping or not?

Q9

Find whether  forms a mapping or not?Find whether  forms a mapping or not?

Q10

Find the domain of