## Question

### Solution

Correct option is

x [-2, 0)  (0, 1) {as we know ; log a x is defined when x, a > 0 and a ≠ 1 also log 1= 0.}

Thus, log10 (1 – x) exists when,  1 – x > 0                          …(i)

.   1 – x > 0 and 1 – x  1   … (ii)

⇒                                                 x < 1 and x  1               …(iii) x + 2 ≥ 0

or                                                      x ≥ -2 exists when (iii) and (iv) both holds true.

⇒                -2 ≤ ≤       and    x

#### SIMILAR QUESTIONS

Q1

If denotes greatest integer function, then

Q2 Infinite set, then period of the function cannot be

Q3

If a polynomial of degree n satisfies then (x) is

Q4 then

Q5

In the given figure find the domain, co-domain and range.

Q6

Find whether (x) = x3 forms a mapping or not?

Q7

Find whether forms a mapping or not?Find whether forms a mapping or not?

Q8

Find the domain of single valued function y = (x) given by the equation 10x + 10y = 10.

Q9

Find the domain of Q10

Find the domain of the function ; 