Question

The function f satisfying 

Solution

Correct option is

The function in (a), (c), (d) satisfying hypothesis of Lagrange’s Mean value theorem so there is c ∈ (ab)

 

differentiable on (1, 2) but not continuous at x = 1 and x = 2 as

       

 

    

             

                               

SIMILAR QUESTIONS

Q1

If the tangent at (1, 1) on y2 = x(2 – x)2 meets the curve again at P, is

Q2

The tangent to the curve 

At the point corresponding to  is

Q3

The points of contact of the vertical tangents to x = 2 – 3 sinθ,  y = 3 + 2 cos θ are

Q4

 the in this interval

Q5

The set of all values of a for which the function

                   

decreases for all real x is

Q6
Q7

The length of a longest interval in which the function 3 sin x – 4Sin3x is increasing is

Q9

The equation e 1 + x – 2 = 0 as 

Q10

Suppose f is differentiable on R and a ≤ f’(x) ≤ b for all x ∈ R where ab> 0. If f (0) = 0, then