Question

If f (x) = x + tan and g(x) is the inverse of f (x) then g’ (x) is equal to:

Solution

Correct option is

We have f (x) = + tan x

⇒         = g’ (x) + sec2(g(x)). g'(x)      {∴ g(x) = f  –1(x)}

           

SIMILAR QUESTIONS

Q1
Q2

The number of points in (1, 3), where is not differentiable is:

Q3

Let f and g be differentiable function satisfying g’ (a) = 2, g (a) = b and fog = I (identity function) Then, f’(b) is equal to:

Q4

If the function , (where [.] denotes the greatest integer function) is continuous and differentiable in (4, 6), then.

Q5

Let [.] denotes the greatest integer function and f (x) = [tan2x], then:

Q6

Let f be a real function satisfying f (x + z) = f (xf (yf (zfor all real xyz . If f (2) = 4 and f’ (0) = 3. Then find f (0) and f’ (2).

Q7

Let h(x) = min.{xx2} for every real number of x. Then:

Q8

Let f : R → R be a function defined by f (x) =  max. {xx3}. The set of all points where (x) is not differentiable is:

Q9

Let f (x) = Ï•(x) + ψ(x) and Ï•(a), ψ’(a) are finite and definite. Then:

Q10

If f (x) is differentiable function and (f (x). g(x)) is differentiable at x = a, then