## Question

### Solution

Correct option is

f (a) ≠ 0, then g(x) must be differentiable] & Ifg(x) is discontinuous, then f (a) = 0 If f (a) ≠ 0 ⇒ g’(a) must exist.

Also if g(a) is discontinuous, f (a) must be 0 for f (x). g(x) to be differentiable.

#### SIMILAR QUESTIONS

Q1

The number of points in (1, 3), where is not differentiable is:

Q2

Let f and g be differentiable function satisfying g’ (a) = 2, g (a) = b and fog = I (identity function) Then, f’(b) is equal to:

Q3

If the function , (where [.] denotes the greatest integer function) is continuous and differentiable in (4, 6), then.

Q4

Let [.] denotes the greatest integer function and f (x) = [tan2x], then:

Q5

Let f be a real function satisfying f (x + z) = f (xf (yf (zfor all real xyz . If f (2) = 4 and f’ (0) = 3. Then find f (0) and f’ (2).

Q6

Let h(x) = min.{xx2} for every real number of x. Then:

Q7

Let f : R → R be a function defined by f (x) =  max. {xx3}. The set of all points where (x) is not differentiable is:

Q8

Let f (x) = Ï•(x) + ψ(x) and Ï•(a), ψ’(a) are finite and definite. Then:

Q9

If f (x) = x + tan and g(x) is the inverse of f (x) then g’ (x) is equal to:

Q10 Determine the value of ‘a’ if possible, so that the function is continuous