﻿  for all real x and y. If f ’ (0) exists and equals to –1and f (0) = 1, find f ’(x). : Kaysons Education

# for All Real x and y. If f ’ (0) Exists And Equals To –1and f (0) = 1, Find f ’(x).

#### Video lectures

Access over 500+ hours of video lectures 24*7, covering complete syllabus for JEE preparation.

#### Online Support

Practice over 30000+ questions starting from basic level to JEE advance level.

#### National Mock Tests

Give tests to analyze your progress and evaluate where you stand in terms of your JEE preparation.

#### Organized Learning

Proper planning to complete syllabus is the key to get a decent rank in JEE.

#### Test Series/Daily assignments

Give tests to analyze your progress and evaluate where you stand in terms of your JEE preparation.

## Question

### Solution

Correct option is

f ’(x) = – 1

Putting y = 0 and (0) = 1 in (i), we have,

#### SIMILAR QUESTIONS

Q1

If the function , (where [.] denotes the greatest integer function) is continuous and differentiable in (4, 6), then.

Q2

Let [.] denotes the greatest integer function and f (x) = [tan2x], then:

Q3

Let f be a real function satisfying f (x + z) = f (xf (yf (zfor all real xyz . If f (2) = 4 and f’ (0) = 3. Then find f (0) and f’ (2).

Q4

Let h(x) = min.{xx2} for every real number of x. Then:

Q5

Let f : R → R be a function defined by f (x) =  max. {xx3}. The set of all points where (x) is not differentiable is:

Q6

Let f (x) = Ï•(x) + ψ(x) and Ï•(a), ψ’(a) are finite and definite. Then:

Q7

If f (x) = x + tan and g(x) is the inverse of f (x) then g’ (x) is equal to:

Q8

If f (x) is differentiable function and (f (x). g(x)) is differentiable at x = a, then

Q9

Determine the value of ‘a’ if possible, so that the function is continuous

Q10

Now if it is given that there exists a positive real δ, such that f (h) = h for 0 < h < δ then find f’(x) and hence f (x).