## Question

### Solution

Correct option is

f ’(x) = – 1 Putting y = 0 and (0) = 1 in (i), we have,        #### SIMILAR QUESTIONS

Q1

If the function , (where [.] denotes the greatest integer function) is continuous and differentiable in (4, 6), then.

Q2

Let [.] denotes the greatest integer function and f (x) = [tan2x], then:

Q3

Let f be a real function satisfying f (x + z) = f (xf (yf (zfor all real xyz . If f (2) = 4 and f’ (0) = 3. Then find f (0) and f’ (2).

Q4

Let h(x) = min.{xx2} for every real number of x. Then:

Q5

Let f : R → R be a function defined by f (x) =  max. {xx3}. The set of all points where (x) is not differentiable is:

Q6

Let f (x) = Ï•(x) + ψ(x) and Ï•(a), ψ’(a) are finite and definite. Then:

Q7

If f (x) = x + tan and g(x) is the inverse of f (x) then g’ (x) is equal to:

Q8

If f (x) is differentiable function and (f (x). g(x)) is differentiable at x = a, then

Q9 Determine the value of ‘a’ if possible, so that the function is continuous

Q10

Now if it is given that there exists a positive real δ, such that f (h) = h for 0 < h < δ then find f’(x) and hence f (x).