Question

If f(x, then f’(1) equals     

 

Solution

Correct option is

– 1

Putting u = xx and using logarithmic differentiation, we get log u = x log x.

Similarly, if   

                     

  

                       

SIMILAR QUESTIONS

Q1

Let R âŸ¶ R be such that f(1) = 3 and f’(1) = 6. Then

                     

Q2

The domain of the derivative of the function

           

Q3

If (0) = 0, f’(0) = 2 then the derivative of  at x = 0 is 

Q4

  

If f is differentiable for all x then 

Q5

Let f and g be differentiable function such that f’(x) = 2g(x) and g’(x) = –f(x), and let T(x) = (f (x))2 – (g(x))2. Then T’(x) is equal to

Q6

Let f be a twice differentiable function such that f’’(x) = –f(x) and f’(x) = g(x). If h’(x) = [f(x)]2 + [g(x)]2h(1) = 8 and 

h(0) = 2, then h(2) is equal to

Q7

If y2 = P(x) is a polynomial of degree 3, then    

              is equal to  

Q8

If  then the set of all points where the derivative exist is

Q9

The value of y’’ (1) if x3 – 2x2y2 + 5x + y – 5 = 0 when y(1) = 1, is equal to

Q10

 

If f (x) = (1 + x)n, then the value of