Question

A function f (x) is defined for x > 0 and satisfies f(x2) = x3 for all x > 0. Then the value of f’(4) is

Solution

Correct option is

3

Note that it is not given that f is a differentiable function we have 

          

                    

                    

                    

                  

SIMILAR QUESTIONS

Q1

If f (x) = |x – 2| and g(x) = f (f (x)), then for x > 20, g’(x) is equal to

Q2

If f (9) = 9 and f’(9) = 4, then 

Q3

The derivatives of sec –1 [1/(2x2 – 1)] with respect to  at x = ½, is

Q4

Let F(x) = f(xg(xh(x) for all real x, where f(x), g(x) and h(x) are differentiable functions. At some point x0,  

                 

                   

Q5

If the function  then the value ofg’(1) is

Q7
Q8

The function y = (x2 + 1)50 is differentiated 70 times to get y70(x). Theny70(x) is a polynomial of degree is equal to

Q9

Let f(x + y) = f(xf(y) for all xy Ïµ R and suppose that is differentiable at 0 and f’(0) = 4. If f(x0) = 8 then f’(x0) is equal to

Q10

Let P(x) be a polynomial of degree 4, with (2) = –1, P’ (2) = 0, P’’ (2), P’’’ (2) = –12 and Piv(2) = 24. The value of P’’(1) is