Question

Let P(x) be a polynomial of degree 4, with (2) = –1, P’ (2) = 0, P’’ (2), P’’’ (2) = –12 and Piv(2) = 24. The value of P’’(1) is

Solution

Correct option is

26

Let us take P(x) = a(x – 2)4 + b(x – 2)3 + c(x – 2)2 + d(x – 2) + e

       

          

          

     

          

SIMILAR QUESTIONS

Q1

If f (9) = 9 and f’(9) = 4, then 

Q2

The derivatives of sec –1 [1/(2x2 – 1)] with respect to  at x = ½, is

Q3

Let F(x) = f(xg(xh(x) for all real x, where f(x), g(x) and h(x) are differentiable functions. At some point x0,  

                 

                   

Q4

If the function  then the value ofg’(1) is

Q6
Q7

The function y = (x2 + 1)50 is differentiated 70 times to get y70(x). Theny70(x) is a polynomial of degree is equal to

Q8

Let f(x + y) = f(xf(y) for all xy Ïµ R and suppose that is differentiable at 0 and f’(0) = 4. If f(x0) = 8 then f’(x0) is equal to

Q9

A function f (x) is defined for x > 0 and satisfies f(x2) = x3 for all x > 0. Then the value of f’(4) is

Q10

Give a function g which has derivative g’(x) for all x satisfying g’(0) = 2 and g(x + y) = ey g(x) + ex g(y) for all xy Ïµ R, g(5) = 32. The value ofg’(5) – 2e5 is