Question

Solution

Correct option is

SIMILAR QUESTIONS

Q1

Find the acute angle between the curves y = | x2 – 1| and y = | x2 – 3 | at their points of intersection when x > 0.

Q2

If the relation between subnormal SN and subtangent ST at any point S on the curve; by2 = (x + a)3 is p(SN) = q(ST)2, then find the value of p/q. 

Q3

 in which interval

Q4

If f (x) = xα log x and f (0) = 0, then the value of ‘α’ for which Rolle’s theorem can be applied in [0, 1] is:

Q5

If abc be non-zero real numbers such that  

                                                                      

Then the equation ax2 + bx + c = 0 will have

Q6

 

Find c of the Lagrange’s mean value theorem for which

Q7

Let f (x) and g (x) be differentiable for 0 ≤ x ≤ 2 such that (0) = 2, g(0) = 1 and f (2) = 8. Let there exists a real number c in [0, 2] such that f’(c) = 3g’(c) then the value of g(2) must be:

Q8

If f (x) = loge x and g(x) = x2 and c Ïµ (4, 5), then  is equal to: 

Q10

Let f (x) satisfy the requirement of lagrange’s mean value theorem in [0, 2]. If f (0) and