Let f (x) Satisfy The Requirement Of Lagrange’s Mean Value Theorem In [0, 2]. If f (0) And     

Why Kaysons ?

Video lectures

Access over 500+ hours of video lectures 24*7, covering complete syllabus for JEE preparation.

Online Support

Practice over 30000+ questions starting from basic level to JEE advance level.

Live Doubt Clearing Session

Ask your doubts live everyday Join our live doubt clearing session conducted by our experts.

National Mock Tests

Give tests to analyze your progress and evaluate where you stand in terms of your JEE preparation.

Organized Learning

Proper planning to complete syllabus is the key to get a decent rank in JEE.

Test Series/Daily assignments

Give tests to analyze your progress and evaluate where you stand in terms of your JEE preparation.

SPEAK TO COUNSELLOR ? CLICK HERE

Question

Let f (x) satisfy the requirement of lagrange’s mean value theorem in [0, 2]. If f (0) and   

 

Solution

Correct option is

Let x Ïµ (0, 2). Since f (x) satisfies the requirements of lagrange’s mean value theorem in [0, 2]. So, it also satisfied in [0, x]. Consequently, there exists c Ïµ (0, x) such that     

                                  

  

  

SIMILAR QUESTIONS

Q1

If the relation between subnormal SN and subtangent ST at any point S on the curve; by2 = (x + a)3 is p(SN) = q(ST)2, then find the value of p/q. 

Q2

 in which interval

Q3

If f (x) = xα log x and f (0) = 0, then the value of ‘α’ for which Rolle’s theorem can be applied in [0, 1] is:

Q4

If abc be non-zero real numbers such that  

                                                                      

Then the equation ax2 + bx + c = 0 will have

Q5

 

Find c of the Lagrange’s mean value theorem for which

Q6

Let f (x) and g (x) be differentiable for 0 ≤ x ≤ 2 such that (0) = 2, g(0) = 1 and f (2) = 8. Let there exists a real number c in [0, 2] such that f’(c) = 3g’(c) then the value of g(2) must be:

Q7

If f (x) = loge x and g(x) = x2 and c Ïµ (4, 5), then  is equal to: 

Q9

In [0, 1] lagrange’s mean value theorem is not applicable to

Q10

Let f : [2, 7] and [0, ) be a continuous and differentiable function.

Then the value of (f (7) – f (2))  is (where c Ïµ (2, 7))