Question

Solution

Correct option is  which is continuous [4, 5] and differentiable on (4, 5)      SIMILAR QUESTIONS

Q1

In [0, 1] lagrange’s mean value theorem is not applicable to

Q2

Let f (x) satisfy the requirement of lagrange’s mean value theorem in [0, 2]. If f (0) and Q3

Let f : [2, 7] and [0, ) be a continuous and differentiable function.

Then the value of (f (7) – f (2)) is (where c Ïµ (2, 7))

Q4

The equation sin x + x cos x = 0 has at least one root in the interval

Q5

Let f (x) = ax5 + bx4 + cx3 + dx2 + ex, where abcde Ïµ R and f (x) = 0 has a positive root α, then

Q6

Between any two real roots of the equation ex sin x – 1 = 0, the equation excos x + 1 = 0 has

Q7

f (x) is a polynomial of degree 4 with real coefficients such that f (x) = 0 is satisfied by x = 1, 2, 3 only, then f’(1). f’(2). f’(3) is equal to:

Q8

If f (x) is a polynomial of degree 5 with real coefficients such that has 8 real roots then f (x) = 0 has:

Q9

If the function f (x) = | x2 + a | x | +b| has exactly three points of non-differentiability, then which of the following can be true?

Q10

If the equation has four solution then be lies in: