In an experiment on photoelectric emission, following observations were made wavelength of the incident light 


Correct option is

The energy of incident photos is  








A light beam of wavelength 6000 Å and intensity  falls normally on a photon-cathode of surface area 1 cm2 and work function 2 eV. Assuming that there is no loss of light by reflection etc., calculate the number of photoelectrons emitted per second. 


When a beam of 10.6-eV photons of intensity 2.0 Wm–2 falls on a platinum surface of area  and work function 5.6 eV, 0.53% of the incident photons eject photoelectrons. Find the number of photoelectrons emitted per second and their minimum and maximum energies (in eV). Take . 


The work function for cesium is 1.8 eV. Light of 5000 Å is incident on it. Calculate maximum velocity of the emitted electrons.


If photoelectrons are to be emitted from a potassium surface with a speedof , what frequency of radiation must be used? The threshold frequency for potassium is 


A sheet of silver is illuminated by monochromatic ultraviolet radiation of wavelength 1810 Å. What is the maximum energy of the emitted electrons? The threshold wavelength for silver is 2640 Å. 


The work function for the surface of aluminium is 4.2 eV. How much potential difference will be required to stop the emission of maximum-energy electrons emitted by light of 2000 Å wavelength?


What will be the wavelength of that incident light for which the stopping potential will be zero?


The threshold frequency for a metal is . Light of frequency  falls on the metal. What will be the cut-off voltage for photoelectric emission. 



The work function of caesium is 2.14 eV. Find the threshold frequency for caesium.


Light of wavelength 2000 Å falls on aluminium surface (work function of aluminium is .2 eV). Calculate cut-off wavelength for aluminium. Take,