The Neutron Separation Energy Is Defined To Be The Energy Required To Remove A Neutron From A Nucleus. Obtain The Neutron Separation Energy Of The Nucleus of . Given : mass Of  atom = 40.962278 u, Mass Of  atom = 39.962591 u, Mass Of Neutron = 1.008665 u and .   

Why Kaysons ?

Video lectures

Access over 500+ hours of video lectures 24*7, covering complete syllabus for JEE preparation.

Online Support

Practice over 30000+ questions starting from basic level to JEE advance level.

Live Doubt Clearing Session

Ask your doubts live everyday Join our live doubt clearing session conducted by our experts.

National Mock Tests

Give tests to analyze your progress and evaluate where you stand in terms of your JEE preparation.

Organized Learning

Proper planning to complete syllabus is the key to get a decent rank in JEE.

Test Series/Daily assignments

Give tests to analyze your progress and evaluate where you stand in terms of your JEE preparation.



The neutron separation energy is defined to be the energy required to remove a neutron from a nucleus. Obtain the neutron separation energy of the nucleus of Given : mass of  atom = 40.962278 u, mass of  atom = 39.962591 u, mass of neutron = 1.008665 u and .   


Correct option is

8.363 MeV

When a neutron is separated from , we are left with , that is, 




This is the total mass of the remaining atom and the separated neutron. The mass of the initial atom  was 40.962278 u. Therefore, the mass defect is 


Its energy equivalent is 

                                                         = 8.363 MeV.  

This is the neutron separation energy.



A neutron breaks into a photon , an electron  and antineutrino . Calculate the energy released in this process in MeVGiven : mass of electron , mass of proton , mass of neutron .


A neutron is absorbed by a  nucleus with subsequent emission of an -particle. Write the corresponding nuclear reaction and calculate the energy released in the reaction. 



Calculate the binding energy of an -particle in MeV. The masses of proton, neutron and -particle are 1.00728, 1.00867 and 4.00151 urespectively.


Calculate the binding energy of a deuteron  in MeV.Given : mass of neutron = 1.008665 u, mass of hydrogen atom , mass of deuterium atoms 


Calculate the binding energy of a nitrogen nucleus in MeVGiven : mass of hydrogen atom = 1.00783 u, mass of

neutron = 1.00867 u and mass of nitrogen atom . Take 1 u = 931.5 MeV/c2.


Calculate the binding energy per nucleon of carbon  nucleus. Given : mass of carbon atom = 12.00000 u, mass of proton = 1.00867 u, mass of electron = 1.00055 u. The energy equivalent of 1 u is 931.5 MeV.  


Calculate the binding energy per nucleon of the nuclei of Given :mass of hydrogen atom = 1.007825 u, mass of neutron = 1.008665 u, mass of  atom = 55.934939 u, mass of  atom = 208.980388u and . Which nucleus is more stable?


The binding energy energies of deuteron  and -particle  are 1.112 and 7.07 MeV/nucleon respectively. Find out in the process , state whether energy is supplied or liberated and how much? 


A heavy nucleus X of mass number A = 240 and binding energy per nucleon = 7.6 MeV is split into two nearly equal fragments Y and Z of mass numbers A1 = 110 and A2 = 130. The binding energy of each one of these nuclei is 8.5 MeV per nucleon. Calculate the total binding energy of each of the nuclei XY and Z, and hence the energy Q released per fission in MeV.   



The nucleus  decays by -emission. Write down the decay equation and determine the maximum kinetic energy of the emitted electron. The atomic masses of  are 22.994466 u and 22.989770 u respectively.